Impact of Free Parking, Transit
 Accessibility, and Socio-Demographic Attributes on Mode Choice in Toronto

Murtaza Haider, Ph.D.
School of Urban Planning

Outline

- Introduction of the problem
- Trends in mode-split, housing typology, and auto ownership
- Multinomial logit model of mode choice
- Conclusions

Introduction

- Analysis of the impact of free parking, transit accessibility, and socio-demographic attributes on mode choice of motorized commute trips that started and terminated in Toronto.
- Non-motorized commute trips during the AM peak period represent a very small segment of the market. Such trips have been excluded from the analysis.
- The analysis is based on a disaggregate database of 21,000 commute trips made during the morning peak period.
- Proximity to transit and other locational factors were added to the database using GIS.

Study Area: Planning Districts in the City of Toronto

Data

- Data were extracted from the 1996 Transportation Tomorrow Survey (TTS). The Joint Program in Transportation at the University of Toronto maintains the database, which represents a 5% sample.
- This paper focuses on mode choice decisions for motorized commute (work) trips made during the morning peak period (6:00 am - 8:59 am) in the City of Toronto, which has a population of 2.5 million people with an average gross density of 10,000 persons per square mile.
- Using Geographic Information Systems, TTS data are enriched by adding details on proximity to subway system at the origin and destination of each trip.

Impact of various factors on mode choice

		Mode Choice			Total	Average
		Transit	Auto Driver	Auto Passenger		Distance
Free Parking at Work						
No	Count	5403	2636	893	8932	
	\% within	60.49	29.51	10.00	100	
Yes	Count	2233	8470	1187	11890	
	\% within	18.78	71.24	9.98	100	
Sex						
Female	Count	4759	4269	1564	10592	
	\% within	44.93	40.30	14.77	100	
Male	Count	2982	6878	536	10396	
	\% within	28.68	66.16	5.16	100	
Occupation						
General Office / Clerical	Count	1887	1437	419	3743	
	\% within	50.41	38.39	11.19	100	
Manufacturing / Construction/ Trades	Count	1122	2347	521	3990	
	\% within	28.12	58.82	13.06	100	
Professional / Management / Technical	Count	3326	5583	739	9648	
	\% within	34.47	57.87	7.66	100	
Retail Sales and Service	Count	1381	1770	414	3565	
	\% within	38.74	49.65	11.61	100	
Employment Status						
Full time	Count	7115	10429	1919	19463	
	\% within	36.56	53.58	9.86	100	
Part time	Count	585	531	160	1276	
	\% within	45.85	41.61	12.54	100	
Total						
	Count	7741	11147	2100	20988	8.63 km
	\% within	36.88	53.11	10.01	100	

Housing Type Decision and Household Size

\qquad

Auto-Ownership and Dwelling Type

			Dweling Type			Total
			House	Apartment	Townhouse	
Vehicles in Household	0	Count	721	1824	89	2634
		\% within Vehicles in Household	27.373	69.248	3.379	100
		Count	4842	4162	614	9618
		\% within Vehicles in Household	50.343	43.273	6.384	100
	2	Count	5383	1229	361	6973
		\% within Vehicles in Household	77.198	17.625	5.177	100
	3	Count	1223	110	51	1384
		\% within Vehicles in Household	88.367	7.948	3.685	100
	4	Count	277	5	10	292
		\% within Vehicles in Household	94.863	1.712	3.425	100
	5	Count	50	7	2	57
		\% within Vehicles in Household	87.719	8.772	3.509	100
Total		Count	12523	7337	1128	20988
		\% within Vehicles in Household	59.667	34.958	5.374	100

Dwelling Type-Mode Choice Tabulations

			Mode Choice			Total
			Transit	Auto Driver	Auto Passenger	
Dweling Type	House	Count	3877	7363	1274	12514
		\% within Dweling Type	31.0\%	58.8\%	10.2\%	100.0\%
	Apartment	Count	3432	3214	689	7335
		\% within Dweling Type	46.8\%	43.8\%	9.4\%	100.0\%
	Townhouse	Count	431	562	135	1128
		\% within Dweling Type	38.2\%	49.8\%	12.0\%	100.0\%
Total		Count	7740	11139	2098	20977
		\% within Dweling Type	36.9\%	53.1\%	10.0\%	100.0\%

Proximity to Transit

Proximity to Transport	Indicator	Observations	Trip Distance	\%age N
Origin within 250m of SW_STN	No	19953	8.73	95.07
	Yes	1035	6.47	4.93
Origin within 500m of SW STN	No	18084	8.92	86.16
	Yes	2904	6.75	13.84
Origin within 500m of SW Line	No	17107	9.00	81.51
	Yes	3881	6.96	18.49
Origin within 1 km of SW Line	No	14244	9.33	67.87
	Yes	6744	7.13	32.13
Origin within 1 km of HW	No	16041	8.60	76.43
	Yes	4947	8.69	23.57
Origin within 2 km of HW	No	11007	8.67	52.44
	Yes	9981	8.57	47.56
Destn within 250m of SW_STN	No	14890	8.38	70.95
	Yes	6098	9.21	29.05
Destn within 500m of SW_STN	No	12525	8.34	59.68
	Yes	8463	9.04	40.32
Destn within 500m of SW Line	No	12151	8.35	57.89
	Yes	8837	9.00	42.11
Destn within 1 km of SW Line	No	10153	8.37	48.38
	Yes	10835	8.86	51.62
Destn within 1 km of HW	No	12246	8.36	58.35
	Yes	8742	9.00	41.65
Destn within 2 km of HW	No	7254	8.18	34.56
	Yes	13734	8.85	65.44
Origin-Destination within 250 m of SW STN	No	20603	8.68	98.17
	Yes	385	5.35	1.83

Proximity to Transit and Mode-split - 1

			Mode Choice			Total
			Transit	Auto Driver	Auto Passenger	
Origin within 250m of SW_STN	No	Count	7229	10685	2039	19953
		\% within	36.23	53.55	10.22	100
	Yes	Count	512	462	61	1035
		\% within	49.47	44.64	5.89	100
Origin within 500m of SW_STN	No	Count	6244	9946	1894	18084
		\% within	34.53	55.00	10.47	100
	Yes	Count	1497	1201	206	2904
		\% within	51.55	41.36	7.09	100
Origin within 500m of SW Line	No	Count	5777	9506	1824	17107
		\% within	33.77	55.57	10.66	100
	Yes	Count	1964	1641	276	3881
		\% within	50.61	42.28	7.11	100
Origin within 1 km of SW Line	No	Count	4611	8087	1546	14244
		\% within	32.37	56.77	10.85	100
	Yes	Count	3130	3060	554	6744
		\% within	46.41	45.37	8.21	100
Origin within 1 km of HW	No	Count	6022	8416	1603	16041
		\% within	37.54	52.47	9.99	100
	Yes	Count	1719	2731	497	4947
		\% within	34.75	55.21	10.05	100
Destn within 250m of SW_STN	No	Count	4172	9127	1591	14890
		\% within	28.02	61.30	10.69	100
	Yes	Count	3569	2020	509	6098
		\% within	58.53	33.13	8.35	100

Proximity to Transit and Mode-split - 2

			Mode Choice			Total
			Transit	Auto Driver	Auto Passenger	
Destn within 500m of SW_STN	0	Count	2938	8193	1394	12525
		\% within	23.46	65.41	11.13	100
	1	Count	4803	2954	706	8463
		\% within	56.75	34.90	8.34	100
Destn within 500 m of SW Line	No	Count	2824	7967	1360	12151
		\% within	23.24	65.57	11.19	100
	Yes	Count	4917	3180	740	8837
		\% within	55.64	35.99	8.37	100
Destn within 1 km of SW Line	No	Count	2101	6914	1138	10153
		\% within	20.69	68.10	11.21	100
	Yes	Count	5640	4233	962	10835
		\% within	52.05	39.07	8.88	100
Destn within 1 km of HW	No	Count	4375	6627	1244	12246
		\% within	35.73	54.12	10.16	100
	Yes	Count	3366	4520	856	8742
		\% within	38.50	51.70	9.79	100
O-D within 250 m	No	Count	7482	11045	2076	20603
		\% within	36.32	53.61	10.08	100
	Yes	Count	259	102	24	385
		\% within	67.27	26.49	6.23	100
Total		Count	7741	11147	2100	20988
		\% within	36.88	53.11	10.01	100

Modelling Framework

- Logistic regression: $\operatorname{Prob}\left(Y_{i}=j\right)=\frac{e^{\beta_{j}^{\prime} x_{i}}}{\sum_{k=0}^{J} e^{e_{k}^{\beta_{k}^{\prime} x_{i}}}}$
- J log-odds ratios: $\ln \left[\frac{P_{i j}}{P_{i 0}}\right]=\beta_{j}^{\prime} x_{i}$
- Wald Statistics: $\left(\frac{\text { Coefficient }}{S E}\right)^{2}$
- McFadden's Rho-squared: $R_{\text {McFadden }}^{2}=\frac{l(0)-l(B)}{l(0)}=1-\frac{l(B)}{l(0)}$
- Where $l(0)$ is the kernel of the log-likelihood of the intercept-only model (only information in the model are sample shares), while $l(B)$ is the kernel of the log-likelihood of the final model.

Mode Choice Model

		B	Std. Error	Wald	df	Sig.	$\operatorname{Exp}(\mathrm{B})$
	Mode Choice						
Intercept	Auto Passenger	-3.773	0.169	501.062	1	0.000	
	Auto Driver	-3.361	0.152	490.516	1	0.000	
N_VEHICL	Auto Passenger	0.399	0.047	70.866	1	0.000	1.490
	Auto Driver	1.888	0.043	1912.989	1	0.000	6.609
N_LICENC	Auto Passenger	0.219	0.037	35.420	1	0.000	1.244
	Auto Driver	-0.925	0.034	731.739	1	0.000	0.397
[O_STN500=0]	Auto Passenger	0.372	0.085	18.977	1	0.000	1.450
	Auto Driver	0.161	0.064	6.318	1	0.012	1.175
[D_STN500=0]	Auto Passenger	0.548	0.090	36.752	1	0.000	1.730
	Auto Driver	0.709	0.074	91.212	1	0.000	2.031
[CBD=.00]	Auto Passenger	0.607	0.074	67.175	1	0.000	1.834
	Auto Driver	0.941	0.058	260.949	1	0.000	2.563
[NEWURB=0]	Auto Passenger	-0.616	0.070	77.826	1	0.000	0.540
	Auto Driver	-0.272	0.066	17.003	1	0.000	0.762
[TRANPASS=0]	Auto Passenger	1.862	0.109	289.417	1	0.000	6.436
	Auto Driver	2.814	0.105	723.287	1	0.000	16.683
MALE =1	Auto Passenger	-0.631	0.061	108.288	1	0.000	0.532
	Auto Driver	0.692	0.046	226.884	1	0.000	1.998
[CONDO $=0$]	Auto Passenger	0.177	0.062	8.246	1	0.004	1.193
	Auto Driver	0.331	0.051	41.722	1	0.000	1.393
NO FREE PARK	Auto Passenger	-0.626	0.063	98.137	1	0.000	0.535
	Auto Driver	-1.450	0.053	750.194	1	0.000	0.234
[LICENCE=0]	Auto Passenger	-0.132	0.072	3.338	1	0.068	0.877
	Auto Driver	-8.691	0.724	144.160	1	0.000	0.000
[D_SW1K=0]	Auto Passenger	0.147	0.091	2.575	1	0.109	1.158
	Auto Driver	0.280	0.079	12.558	1	0.000	1.323

Goodness of Fit Statistics

Pseudo R-Square				
Cox and Snell	0.5407			

Model Findings - 1

- The estimated coefficient measures the change in log-odds, e.g., LN[Prob(auto-drive)/Prob(transit)]. Whereas $\exp (\log -$ odds) gives the odd ratio: Prob(auto-drive)/Prob(transit)].
- Commuters with no parking at work are less likely either to drive or to be a passenger in an automobile. The odds of commuters with free parking to drive against taking transit are 4.27 times higher than the odds for those without parking.
- Similarly, the odds of commuters with free parking to be auto-passenger against taking transit are 2.1 times higher than that of those without free parking.

Model Findings - 2

- A standard deviation increase in the number of vehicles owned by the household increases the odds of driving against transit by 560%. The odds of being auto-passenger increase by 49%.
- An increase of one standard deviation in the number of licensed drivers in the household increases the odds of being an auto-passenger by 24.4%.
- Interestingly enough the odds of driving to work against transit decrease with a standard deviation increase in the number of licensed drivers in the household.
- This is perhaps because the model is controlling for household automobile ownership as well.

Model Findings - 3

- The odds of auto-drive mode for commute trips that do not terminate in CBD are 2.56 times higher than those trips that terminate in CBD.
- Similarly, the odds of auto-passenger mode against transit are 1.83 times higher for trips that terminate outside of CBD than the rest.
- The odds of commute trips by transit are much higher for trips that originate or terminate in proximity of subway stations and subway line.
- The odds of auto-driver against transit for trips that terminate at more than 500-meters away from a subway station are 2 times higher than those that terminate within 500 meters of a subway station.

Model Findings - 4

- The odds of males being auto-drivers against transit are 2 times higher than the odds for females.
- Similarly, the odds for males being auto-passengers against taking transit are much lower.
- Commuters who do not live in condominiums or high rises are likely to drive or be auto passenger.
- Commuters with a valid driver's license are also more likely to be auto-passengers than to ride transit.

Model Findings - 5

- The model did not improve when employment status (full time against part time) is introduced.
- Similarly, age as a continuous or categorical variable does not improve the model fit.
- The model is 91% correct in predicting auto drive mode
- 79% correct in predicting transit trips.
- However, the model fails to predict auto-passenger trips correctly.
- Groups of unequal sizes in multinomial logit model (e.g., autopassenger represents only 10% of the total observations) presents unique problem where cases are often classified to the larger group. Overall, the model is 78% correct.

Conclusions

- Most trip-makers (57\%) have reported access to free parking at their work for home-based work trips.
- Almost 85% commuters with access to free parking drove to work against 30% of those without access to free parking.
- Female commuters are more likely to take transit to work, while most male commuters prefer to drive to work.
- Proximity to subway system in Toronto increases the likelihood of transit mode split.
- Proximity to subway system at destination results in higher transit mode split than proximity at the origin.

Conclusions - 2

- Most one-person households who do not own private automobiles live in high-rise buildings.
- Similarly, most residents of high-rise buildings take transit to work.
- The implicit relation between housing topology and mode choice is further explored in a multinomial logit model.

